Copied to
clipboard

G = C3×C32⋊C4order 108 = 22·33

Direct product of C3 and C32⋊C4

direct product, metabelian, soluble, monomial, A-group

Aliases: C3×C32⋊C4, C331C4, C322C12, C3⋊S3.C6, (C3×C3⋊S3).1C2, SmallGroup(108,36)

Series: Derived Chief Lower central Upper central

C1C32 — C3×C32⋊C4
C1C32C3⋊S3C3×C3⋊S3 — C3×C32⋊C4
C32 — C3×C32⋊C4
C1C3

Generators and relations for C3×C32⋊C4
 G = < a,b,c,d | a3=b3=c3=d4=1, ab=ba, ac=ca, ad=da, dcd-1=bc=cb, dbd-1=b-1c >

9C2
2C3
2C3
4C3
4C3
9C4
6S3
6S3
9C6
2C32
2C32
4C32
4C32
9C12
6C3×S3
6C3×S3

Character table of C3×C32⋊C4

 class 123A3B3C3D3E3F3G3H4A4B6A6B12A12B12C12D
 size 191144444499999999
ρ1111111111111111111    trivial
ρ21111111111-1-111-1-1-1-1    linear of order 2
ρ311ζ32ζ3ζ3ζ32ζ3211ζ3-1-1ζ32ζ3ζ65ζ6ζ65ζ6    linear of order 6
ρ411ζ3ζ32ζ32ζ3ζ311ζ3211ζ3ζ32ζ32ζ3ζ32ζ3    linear of order 3
ρ511ζ32ζ3ζ3ζ32ζ3211ζ311ζ32ζ3ζ3ζ32ζ3ζ32    linear of order 3
ρ611ζ3ζ32ζ32ζ3ζ311ζ32-1-1ζ3ζ32ζ6ζ65ζ6ζ65    linear of order 6
ρ71-111111111i-i-1-1-i-iii    linear of order 4
ρ81-111111111-ii-1-1ii-i-i    linear of order 4
ρ91-1ζ3ζ32ζ32ζ3ζ311ζ32-iiζ65ζ6ζ4ζ32ζ4ζ3ζ43ζ32ζ43ζ3    linear of order 12
ρ101-1ζ32ζ3ζ3ζ32ζ3211ζ3-iiζ6ζ65ζ4ζ3ζ4ζ32ζ43ζ3ζ43ζ32    linear of order 12
ρ111-1ζ3ζ32ζ32ζ3ζ311ζ32i-iζ65ζ6ζ43ζ32ζ43ζ3ζ4ζ32ζ4ζ3    linear of order 12
ρ121-1ζ32ζ3ζ3ζ32ζ3211ζ3i-iζ6ζ65ζ43ζ3ζ43ζ32ζ4ζ3ζ4ζ32    linear of order 12
ρ134044-2-21-21100000000    orthogonal lifted from C32⋊C4
ρ14404411-21-2-200000000    orthogonal lifted from C32⋊C4
ρ1540-2-2-3-2+2-31--31+-3ζ32-21ζ300000000    complex faithful
ρ1640-2-2-3-2+2-3ζ3ζ321+-31-21--300000000    complex faithful
ρ1740-2+2-3-2-2-3ζ32ζ31--31-21+-300000000    complex faithful
ρ1840-2+2-3-2-2-31+-31--3ζ3-21ζ3200000000    complex faithful

Permutation representations of C3×C32⋊C4
On 12 points - transitive group 12T73
Generators in S12
(1 8 9)(2 5 10)(3 6 11)(4 7 12)
(2 5 10)(4 12 7)
(1 8 9)(2 5 10)(3 11 6)(4 12 7)
(1 2 3 4)(5 6 7 8)(9 10 11 12)

G:=sub<Sym(12)| (1,8,9)(2,5,10)(3,6,11)(4,7,12), (2,5,10)(4,12,7), (1,8,9)(2,5,10)(3,11,6)(4,12,7), (1,2,3,4)(5,6,7,8)(9,10,11,12)>;

G:=Group( (1,8,9)(2,5,10)(3,6,11)(4,7,12), (2,5,10)(4,12,7), (1,8,9)(2,5,10)(3,11,6)(4,12,7), (1,2,3,4)(5,6,7,8)(9,10,11,12) );

G=PermutationGroup([[(1,8,9),(2,5,10),(3,6,11),(4,7,12)], [(2,5,10),(4,12,7)], [(1,8,9),(2,5,10),(3,11,6),(4,12,7)], [(1,2,3,4),(5,6,7,8),(9,10,11,12)]])

G:=TransitiveGroup(12,73);

On 18 points - transitive group 18T44
Generators in S18
(1 5 4)(2 6 3)(7 17 12)(8 18 13)(9 15 14)(10 16 11)
(1 17 15)(2 16 18)(3 10 8)(4 7 9)(5 12 14)(6 11 13)
(2 18 16)(3 8 10)(6 13 11)
(1 2)(3 4)(5 6)(7 8 9 10)(11 12 13 14)(15 16 17 18)

G:=sub<Sym(18)| (1,5,4)(2,6,3)(7,17,12)(8,18,13)(9,15,14)(10,16,11), (1,17,15)(2,16,18)(3,10,8)(4,7,9)(5,12,14)(6,11,13), (2,18,16)(3,8,10)(6,13,11), (1,2)(3,4)(5,6)(7,8,9,10)(11,12,13,14)(15,16,17,18)>;

G:=Group( (1,5,4)(2,6,3)(7,17,12)(8,18,13)(9,15,14)(10,16,11), (1,17,15)(2,16,18)(3,10,8)(4,7,9)(5,12,14)(6,11,13), (2,18,16)(3,8,10)(6,13,11), (1,2)(3,4)(5,6)(7,8,9,10)(11,12,13,14)(15,16,17,18) );

G=PermutationGroup([[(1,5,4),(2,6,3),(7,17,12),(8,18,13),(9,15,14),(10,16,11)], [(1,17,15),(2,16,18),(3,10,8),(4,7,9),(5,12,14),(6,11,13)], [(2,18,16),(3,8,10),(6,13,11)], [(1,2),(3,4),(5,6),(7,8,9,10),(11,12,13,14),(15,16,17,18)]])

G:=TransitiveGroup(18,44);

On 27 points - transitive group 27T33
Generators in S27
(1 2 3)(4 25 14)(5 26 15)(6 27 12)(7 24 13)(8 21 18)(9 22 19)(10 23 16)(11 20 17)
(1 4 6)(2 25 27)(3 14 12)(5 11 8)(7 10 9)(13 16 19)(15 17 18)(20 21 26)(22 24 23)
(1 10 8)(2 23 21)(3 16 18)(4 9 5)(6 7 11)(12 13 17)(14 19 15)(20 27 24)(22 26 25)
(4 5 6 7)(8 9 10 11)(12 13 14 15)(16 17 18 19)(20 21 22 23)(24 25 26 27)

G:=sub<Sym(27)| (1,2,3)(4,25,14)(5,26,15)(6,27,12)(7,24,13)(8,21,18)(9,22,19)(10,23,16)(11,20,17), (1,4,6)(2,25,27)(3,14,12)(5,11,8)(7,10,9)(13,16,19)(15,17,18)(20,21,26)(22,24,23), (1,10,8)(2,23,21)(3,16,18)(4,9,5)(6,7,11)(12,13,17)(14,19,15)(20,27,24)(22,26,25), (4,5,6,7)(8,9,10,11)(12,13,14,15)(16,17,18,19)(20,21,22,23)(24,25,26,27)>;

G:=Group( (1,2,3)(4,25,14)(5,26,15)(6,27,12)(7,24,13)(8,21,18)(9,22,19)(10,23,16)(11,20,17), (1,4,6)(2,25,27)(3,14,12)(5,11,8)(7,10,9)(13,16,19)(15,17,18)(20,21,26)(22,24,23), (1,10,8)(2,23,21)(3,16,18)(4,9,5)(6,7,11)(12,13,17)(14,19,15)(20,27,24)(22,26,25), (4,5,6,7)(8,9,10,11)(12,13,14,15)(16,17,18,19)(20,21,22,23)(24,25,26,27) );

G=PermutationGroup([[(1,2,3),(4,25,14),(5,26,15),(6,27,12),(7,24,13),(8,21,18),(9,22,19),(10,23,16),(11,20,17)], [(1,4,6),(2,25,27),(3,14,12),(5,11,8),(7,10,9),(13,16,19),(15,17,18),(20,21,26),(22,24,23)], [(1,10,8),(2,23,21),(3,16,18),(4,9,5),(6,7,11),(12,13,17),(14,19,15),(20,27,24),(22,26,25)], [(4,5,6,7),(8,9,10,11),(12,13,14,15),(16,17,18,19),(20,21,22,23),(24,25,26,27)]])

G:=TransitiveGroup(27,33);

C3×C32⋊C4 is a maximal subgroup of   C3⋊F9  C322D12  C33⋊Q8
C3×C32⋊C4 is a maximal quotient of   He3.3C12

Polynomial with Galois group C3×C32⋊C4 over ℚ
actionf(x)Disc(f)
12T73x12-4x11+38x10-163x9+1073x8-3580x7+16135x6-41958x5+122109x4-219057x3+358551x2-335799x+164511232·332·139·532·614·5032·329392·334976032

Matrix representation of C3×C32⋊C4 in GL4(𝔽7) generated by

4000
0400
0040
0004
,
4250
2352
2262
2432
,
6031
5360
1645
3326
,
4514
3121
3214
0001
G:=sub<GL(4,GF(7))| [4,0,0,0,0,4,0,0,0,0,4,0,0,0,0,4],[4,2,2,2,2,3,2,4,5,5,6,3,0,2,2,2],[6,5,1,3,0,3,6,3,3,6,4,2,1,0,5,6],[4,3,3,0,5,1,2,0,1,2,1,0,4,1,4,1] >;

C3×C32⋊C4 in GAP, Magma, Sage, TeX

C_3\times C_3^2\rtimes C_4
% in TeX

G:=Group("C3xC3^2:C4");
// GroupNames label

G:=SmallGroup(108,36);
// by ID

G=gap.SmallGroup(108,36);
# by ID

G:=PCGroup([5,-2,-3,-2,-3,3,30,1683,93,2404,314]);
// Polycyclic

G:=Group<a,b,c,d|a^3=b^3=c^3=d^4=1,a*b=b*a,a*c=c*a,a*d=d*a,d*c*d^-1=b*c=c*b,d*b*d^-1=b^-1*c>;
// generators/relations

Export

Subgroup lattice of C3×C32⋊C4 in TeX
Character table of C3×C32⋊C4 in TeX

׿
×
𝔽